Quadratic functional equations of Pexider type

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic Functional Equations of Pexider Type

First, the quadratic functional equation of Pexider type will be solved. By applying this result, we will also solve some functional equations of Pexider type which are closely associated with the quadratic equation.

متن کامل

Quadratic $alpha$-functional equations

In this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-Archimedean number with $alpha^{-2}neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic $alpha$-functional equation (0.1) in non-Archimedean Banach spaces.

متن کامل

Pexider Functional Equations Their Fuzzy Analogs 529

may be interpreted as giving the amount of information I due to two independent events A and B with probabilities p and q, respectively. The functional equation (1.1) is one of Cauchy equations, and has been dealt with extensively (see Aczdl [1-2]). However, it is more often than not that we do not have the exact values of the probabilities p and q because not enough data is available or becaus...

متن کامل

quadratic $alpha$-functional equations

in this paper, we solve the quadratic $alpha$ -functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f( alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-archimedean number with $alpha^{-2}neq 3$. using the fixed point method and the direct method, we prove the hyers-ulam stability of the quadratic $alpha$-functional equation (0.1) in non-archimedean banach spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2000

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171200004075